LEVEL REGULATION OF GROUND WATER IN IRRIGATION

N. N. Kochina - UDC 532.54

Level regulation of ground water is important for preventing the irrigated ground from be-
coming bogged up or salinated; the evaporation and the existence of a weakly permeable hori-
zontal waterproof stratum are taken into account. The solution is found in an explicit form.

It is also shown that the solution tends asymptotically either to one of the two stationary solu-
tions or to periodic solutions which are also obtained in this paper.

1. A mathematical investigation of irrigation processes can be found in [1-5].

In [6] the asymptotic behavior was studied of the solutions of two initial-boundary value problems for
the heat-conduction equation with finite time, a nonlinear right-hand side, and with nonlinear boundary condi
tion, It was shown that the solution of each problem,depending on the values of the initial function and of
the constants appearing in the assumptions of the problem,either tends to a stable stationary solution of
the heat-conduction equations with boundary conditions or to a periodic solution of the corresponding prob-
lem. Solutions of these problems can be classified in four groups.

By using the asymptotics of the solution of the first and the second boundary-value problem for para-
bolic equations [7] it can be shown that the four-group classification also holds for a wider class of prob-
lems.

The solution of one initial-boundary value problem was obtained in [8]. The variation with time of
the level of ground water for irrigation with evaporation can be solved under the assumption that the sur-
face of the ground water is slightly curved and that of the impermeable waterproof stratum is horizontal.

In practice one often encounters cases where a waterproof stratum is hardly permeable. The stra-
tum is assumed to be horizontal, and of constant depth M,.

It is assumed that the ground water occupies an area between two channels or drains 0 <x<] in
which the water levels are H,(t) or Hy(t). The following method for regulating the level of ground water
by irrigation is considered: when the level measured at the point 0 < x° < [ reaches the value h,, then
the irrigation which takes place with intensity me is discontinued and it is started again when h becomes
h** < hx,

It is assumed that the evaporation intensity is given by m (d;h +d,).

One should assume that either d; =0, dy > 0 or d; > 0, dy < 0. In the latter case the obtained results
are correct for ground-water levels which are not below —d,/d,.

One is also able to take approximately into account the vertical pumping of the ground water by
the holes of the vertical drainage being *smeared® over the entire region 0 < x< ! between drains and
by converting the boundary conditions at the holes into a differential equation by adding fictitious "evapora-
tion® of intensity mds, d; =const (see, for example, [5]).

The problem boils down to the finding of a solution of the inhomogeneous heat-conduction equation

oh 3h
ot =05 —b(h — H) + F [k (2 t)] (1.1)
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¢ for  R@z°, )<k, (1.2)

F [h (zo, t)] = { —d for h(zo, t) > h#‘

with the boundary conditions
RO, =Hy(t), h(l,?)=H({ ' (1.3)
and the initial condition
h(z, 0) = o (2) (1.4)
The following notation is used in Eq. (1.2):

c=e—dH —d, d=d,+dH, d,=dy+ds
o =kHy/m, b=ky/Mm+d,

where k is the filtration coefficient; k; is the filtration coefficient of weakly permeable waterproof stratum;
m is the porosity; (k,/My) (H—h) is the seepage rate through waterproof layer; H, is the mean value of thick-
ness of the water-bearing portion of the stratum.

It is assumed that time changes of the water levels in the channels H, and H, can be ignored; they
appear in the boundary conditions (1.3); thus H; =const, H, =const.

Thus Egs. (1.1), (1.2) together with the conditions (1.3) have stable and stationary solutions v (x) and
wo(x) given by
@ =H+-+Csh Xz 1 X2 (m 1
wo(z)=H—%+Cssh¥z+c.sh}§b(z—-l) (1.5)

Ci= (Hz —H '—'%) (sh#l)-l

Ca =—(H1——H—%)(sh }:_31)" 1.6)

The expressions for C4 and C, are obtained by replacing ¢/b by the quantity —d/b in (1.6).

The periodic solution is given by (here T, is the duration of the irrigation stage, and T is the oscilla-
tion period)

(Hs——Hl)I

h(x,t)=H1+f—_l—+ui(xvt) (l=112)

uy (2, 1) = v(2) + D) Crexp(—AM)sin 5= (0<t<<T)

n=1
Uy (z,) = w(z) + X Daexpl—A2(t— Tylsin 5= (i <t<T)
n=}1

8n (1 —Bp)
, D,=-nl_Fn)
1—6, (1.7

Bn=exp(—AnT1), Ta=-exp[— A2 (T — T,
8, = exp (— A7)

,  madn? =01 —1n)
At =—5 + b, Cn—ﬁ"—

8= vn —wo = XD g — ([ L e L
v(x) = vo(z) — Hy — (Hy — Hy) /1,
w(z) = wy(z)— Hy, — (Hy — Hy)z/l

In the above,vy and wy, are Fourier coefficients of the functions v(x) and w(x), respectively. Equations
(1.5) and (1.7) yield for 0 < x° < ] the inequality v (x°)—w'(x°) > 0. The quantities T, and T,=T~T, are found
as the smallest roots of the system of two equations
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S o Ball—1a) .
oM T =— 3 0,2 0=T) in E — uy — 0 (2")
n=1

[}

o<

n(l —Ba) ., mnz® v
P (T, To) = z en’r 1(__55 ) sin 17 = Upy — w(2°) (1.8)
n=o0 .
' Hy — Hy) «° H;— H)) o\ -
(u*':'ht“Hl—('—'—lL)i’, u**=h**—H1'—(——’l—0$)

For Ty =T, =0 the functions ¢ (T;, Ty and ¢ (T, T,) are not continuous. It can be shown from the
functions Uy = @(Ty, Ty} and Uys = ¢(Ty, Ty) given by (1.8) that a pair of values w(x°) — v(x°) < U, < 0 and
0 < Uyq <€ v(x°) — w(x°) is uniquely associated with a pair of values T and T,, so that Ty and T, do not vanish
simultaneously. ‘

Thus, with any pair of values u, and u,, such that w (¥} <u ,, < uy < v(x°) there is associated at
least one pair of the values T;# 0, T,= 0. If the latter is not a unique pair, the smallest possible T, and
T, is adopted, '

If instead of considering the periodic solution (1.7) one considers now a periodic solution consisting
of 2m portions, U5 41 (x, t), Upj 42 (x, t) (=0, 1, 2, ..., m—1), then it can be seen that all portions either
with odd or even subscripts are equal, that is, (uzj +1 (5 )=y (x, 1), U5 41 x, t) =u, (x, 1), j=1, 2, ...,
m—1). This implies the uniqueness of the periodic solution (1.7).

Periodic solutions of parabolic equations with nonlinear right-hand sides were analyzed in [9-11].

2. The initial-boundary value problem (1.1)-(1.4) is considered, and it is now assumed that the in~
equalities

u, — v () <0, up —w(E@)>0

hold where ¢ (x°) < ux (the case of ¢ (x°) > u, can be similarly analyzed). The solution of the latter prob-
lem is
k3

u™ (@,0) = (@) + 2 C5 exp{ —a.2(t— 3 70) }sin 5
n=i1

b {
=0

(Zro<t<JTO4 1, 1=0,1,2,3,...,70=0)

7=0 =0
- . 2.1
i (z,0) =w(@) + ) DSV exp { — a2 (1~ 19~ T ) }sin
n=1 j=0
i . i1
(B 1o+ i <e< J19)
=0 =0
In the above Cn(i) are the Fourier coefficients of the function ¢ (x)—v (%), Ti(i) and T(Y) are the
smallest roots of the equations
(i+1) c : i 1(i+1) 1 s (2 2)
Uy (xva(’)+]1 )=u*, u;*l)(IO’ETU))—_-u*‘ :
7=0 j=0
The following relations can be obtained from Egs. (2.1) and (2,2):
Uy — U(2°) = 2 CHI8LY gin :_m_le_ (i=0,1,2,...)
n=1
(2.3)

Upy — w(2) = 2 DiPE D sin T (i=0,1,2,...)
n=1
In the above one has

pn“) =exp[— ;v"q‘l(i)], ,},n(i) = 8Xp {— A, [T(i) - Tl(i)]}
The equalities
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j=0

1
ufit (z, 2 T(J)) =u,® (:c
=0
i

(.m( 2 79 4 Ty =y (x, 19 4 T‘l“"’)
je0
imply the relations
Cs‘NZ) _ en + Tﬁ#l)Dgfl)' Dg«fl) - 91. + Bg+}"csz+l)
The following equalities follow from Eqs. (2.5):

C(m) —8, p(t- k) + Tn (z)~ (t) (t-l)pg-n . Tg-k)pg-k)cg-k) (i >1)
D(iﬂ) 0 B(i+l » K+1) + Bs:ﬂ),rn(:)a 63} .. ,rg-k)pg_k)cg_k) (i > 0)

F(i K LA ‘ i i + —_— 3

( ) 1 , () ,r(t)B @) ()B [OW )] . ¥ ) @) ..
i,k) i) (i) (i-1 i-1)n(i-1 $)(i-1

B( Bn 181 i-1) B(;)( )B )l B(),r( ).._

In Egs. (2.6) k may assume any integer value k =1.

After transformations and using (2.1) and (2.6) Eqs. (2.2) assume the form

(i+1) (lﬂ) ) &) (i-K+1 (i~k ’(i-k " (=K ’(i-k
B = o3, 1, B, .., BT, R iR oo

23 i i i-k i-
(1+ ) ‘P(T( +1) B(1+1)' l) ey B§ +1), T? k),

—K —K (1]
CEM, M R

for arbitrarily large value of i; in the above the following notation was introduced:

i+1) i i i—k+ i~k (i-k (1 * (3]
@™, 1, B0, BT, A, O, 69, L e,
(-]
i i,k i i) (i, &
=B+ 3] A, BRI + BB ) +
n=3

oo
i i i) (i = k) (k)
+ 2 (ngu) — BS;“’) ,rn(z)Bn( ) BS: k+1),r$: ke 6 gin wnz® /1
n=1

i+1] i+l i i~k i-k i~k "(i-k (i~
‘p (T§1+ )1 B(lﬁ‘ )7 71(;)1 ey B(ll +l)1 'l’il )1 Cl(‘ )y CZ(‘ )v LA Cn( g

— 71(0) + 2 B" {Tsf#l)Bgu. k+1) + 1’(1“1)[353“)I‘$x" k)} +
n=s

oo .
+ 20 — ) BB B P sinana® 11

=]

B = gu, — v ()], 719 = pluy, —w(2")),
A = g0, sin tna® /1 '

. fnx® (1K _ "
B, = — pB,sin lx ’ R R TR | peteh)
= [uy — v(2°) -+ 6, sin n2° /1] !

q = [Upy —w(z°) — OB sinnz® /]!

In the case under consideration the following inequalities are satisfied;
U, —v(@°) <0, Upe—w(@)>0

yerd) =

yous) ==

Sg_kﬂ)'rg—k)

(2.4)

(2.5)

(2.6)

2.7

(2.8)

(2.9)

(2.10)

(2.11)

It follows from Eqs. (2.8)-(2.11) that Egs. (2.7) have at least one solution for any values of ﬁi(") and

..
1
If there are several solutions of Eqs. (2.7), say — Bi(iﬂ) and 'Yt(H )
is adopted.
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It can be shown that the following are valid;

lima™ =8, limyf™ =g (2.12)
where £, =exp (—A 2T)), vy =exp [-A,? (T—Ty)] for the periodic solution (2.7). The values g,(i) andy,()
which can be determined from Egs. (2.7) and (2.8) are bounded if u,—u,, >4 >0

ﬁmin < me << f’max; Ymin << 'Ylm < Ymax (2.13)

The constants Bmin, ¥ min» Amax» Ymax ¢2n be determined from equations which are similar to (2.7)
and (2.8) by using successive approximations.

3. By Introducing the notation
f(Bl({)’ 7?—1)' Bii_1)7 LS} 71(2)1 31(2)1 'hw) = 2 An {(Bl(i))Pn X

n=3
X — (12 )™ 4 (VB — (B L
... ( (i—l)B(i-l) 3 (2).], (1))Pn] + B (i) (T(li—l))l‘n [1 — (B’li—l))'r‘n +
+ @I L B B
' ’ ' ) ® . (3.1)
2D B D B, R, L G,y = D BT — B () )

n=2

i .
‘g (Bg *1) 1 Tl(!)

_ [al(i) _ (Bl(i))Pn]} (Tii—l)mi—l) . ,h(l)Bl(l))!‘n Cnlsin anz® /1 -+

+ 2 A [ — B 1,93, D L, @B P — (D))

n==g

one finds from Eqs. (2.7) and (2.8) the following expression for the difference Bl(iﬂ)—ﬁi(i):

B§1+l) - Bl(l) = f(thl)7 Tl(l)v Bl(l)v AR} 71(3)1 31(3)) 71(2)) -

i) (i~ i-1) 2 .
- f(Bl(l)s 'I'l l) (1 [T Yl(z)v Bl( )7 Tl(l)) I
+ 5 @Y, »ﬁ"’, B A 040 SR o L A

(3.2)

Moreover, one can write the equation

f(B?“) 'i'lm, [?;l(i) s Tl(a) Bl(a)' '1’1(2)) -
- .f(Bl“)s Tl(i_l)a B(li_l)a svoey 71(2)7 ﬁ'l(z)v Tl(l)) =
= §1(') (‘B(llﬂ) _ 31(1)) + ,q(l!-l) (Tl(") _ Tg.‘_l)) + 'S';’—l) (Bl(l) . Bil—l)) + (3.3)
+uf P af P — )+ BT B +
+ ,qu—x) (Tl(ﬂ — Ti)—l)) +. 4 nl(l) (,nm _ 71(1))
In the above ¢ @ j=2, 3, ..., i) and 771(3) (=1, 2, ..., i—1) are the mean values of the derivatives
af/apl(l) and 9f/dy{J); they can be found by using Eq. (3 1).
An estimate can be found for the quantities éi(l) and 7 1(j) by using the inequalities (2.13).

The following notation is introduced:

q = (Bmax']’max)”‘

=2 2 ol An] (Bimax — Bmm Ttr:xna—xl
(3.4)
B=1y 2 P'nl A4, I(l3max — Bmm) Bnraxl'r;?ax
W= B, g =T, xm ma®, g = mox g™
It is found from (3.1)-(3.4) that
HV<E B0 <R T I< e8] (3.5)

| Y]Y n |<<a, |n10) ' < q(i_l_j)i, l"h e l< q I TII(J)I
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Let lﬁi(i)l < E; then one finds from (3.3) and (3.5) the inequality

186 — 3,9 < BB — 3O +afn® — 17 |+

BB — B +ag i — Y 4 B BT — B

LB B = B + ag N — P+ 5d Y (f =g/ a)
Y-l

E = ) po| An)Brax + A lAn]'T‘an’Z\x
n=3

n=s

The following notation was introduced in (3.6):

oo o0
. . mnae® | (nobat
6 = (Bmax — Bmin) Z |Cril) |\Sln"% q e ~+ Bmax 2 | Anl

n=3 n=3

and the following estimate was used:
|8 < ogii-
For j=1, 2, ..., i let the following inequalities hold;
IYl(j) . ng—l) |<8ly [B‘(J') _ B(li—u |< €,
Equation (3.6) together with (3.8) yields

aey -+ Bez

(i+1) (i) i
|?’1 - 31 I< (1 — E) (1 _ q) + qu( 2)
/

_ gt o loes + Bes) 1 )
kD = {59 T €y } (

1—g¢q 1—F)
A similar formula is also valid for the difference |y{i+1—y, (D],
Let &=max (€, €y). '

Let there exist a value 0 < Ay < 1 such that the following inequalities hold:

aey - Bea Te1 - O€a
T—Ba—7 <M ToAi—g =M

(3.6)

3.7

(3.8)

(3.9

(3.10)

It will be shown that for i — « the quantities /31(1) and 71("’), which are determined by Egqs. (2.7)-(2.9),

approach the limits B, and y,. To this end it suffices to show that the differences {8 1(“?) -p{D | and

l~'}'1(1+p) -n“’l approach zero as i — «. Indeed, it was previously shown that the quantities are bounded

for all i, that is, that the quantities Bl(i) and 'y,(i) exist.

4. It is assumed that i is a fixed and suitably large integer. It will be shown that

|B§M) _ BI(J) | < ex"—l’ I,r(liﬂ) - 71(1’) | < ™!
for

:n(nz—f-i)i_i’ "("2+1)i—2,. (n—‘i)ni

5
For j=1, 2, ..., i one has by assumption )

e — g0 <e, Y —n?I<e (r=1)
It follows from the relations (3.9) that for j=i, i+1, ..., 3i—1

B B0 | <hee + Dg"% [0 =P <hee +60 (@' =9

The inequalities
|30 gD <ne, [0 —mP <he (O<ALY)
are satisfied if

e + Mg'it << Ae (M = max (D, G))
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v,zF—— >3~ For sufficiently large i one has

5 ; q'i‘z <(h — Ao)M-'e

, M i et where 0 <A < land 0 <Ay < A < 1; thus the inequality (4.4) holds.
-67/ It can be shown similarly that the inequalities (4.1) hold for all j.

2 —— —— ]

. With the afd of (4.1) one can find an estimate for the difference |8, G+p)
[31(3"'1) | foranyp=1,2....

; .
£z 3 29 o By using the inequality
~2 p— _f______ ]B;JW) _ ngu) |<| Bgiw)_ Bijﬂ’—l) I < I 3£i+p—1) . 3(lf+p—2)l+ o | 3(11'*2) . Biﬁﬂ) ,
p ,Ji it can be shown that the necessary and sufficient condition for the existence
/1 of the limit B, of the sequence B (§) is satisfied. The existence of the limit
L 1 €q 1
5 v, for the sequence 'yi(J) is demonstrated similarly,
—
L A Let us suppose now that the water level in channels or drains are time
- dependent H;=Hj(t) (i=1, 2) and that
Fig. 1 limH;(t) = Hiw, HmH/(t) =0
t—oco t—o00

The above four cases of the behavior of the solutions of the respective initial-boundary value problems
are also true if in Eqs. (1.5)-(1.8) one replaces the quantities Hj by Hio (1=1, 2). In the fourth case in
which the inequalities uy |~V (X°) <0, Uyx oo ~Wo (X°) > 0 similar to (2.11) hold, the relations (2.12) are
valid and the solution tends asymptotically to the periodic (1.7) with a replacement as described above.

The effect of overflows is shown in the diagram together with the graphs of the functions

Y = m(cTJlr, <o, z=1Y (crl T~ 0

evaluated in accordance with (1.8) as dependent on T, for x/7 =0.5, A =T/ T, (continuous lines are for b=
1/60, dashed lines for b=0). Curve 1 corresponds to A =4, curve 2 to A =2, and curve 3 to A =4/3.
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